Galois scaffolds and semistable extensions

References

[Bon1] Mikhail V. Bondarko, Local Leopoldt's problem for rings of integers in abelian p-extensions of complete discrete valuation fields, Doc. Math. 5 (2000), 657-693.
[Bon2] Mikhail V. Bondarko, Local Leopoldt's problem for ideals in totally ramified p-extensions of complete discrete valuation fields, Algebraic number theory and algebraic geometry, 27-57, Contemp. Math. 300, Amer. Math. Soc., Providence, RI, 2002.
[BCE] Nigel P. Byott, Lindsay N. Childs, and G. Griffith Elder, Scaffolds and generalized integral Galois module structure, Ann. Inst. Fourier (Grenoble) 68 (2018), 965-1010.

Local fields

Let K be a field which is complete with respect to a discrete valuation $v_{K}: K^{\times} \rightarrow \mathbb{Z}$, whose residue field \bar{K} is a perfect field of characteristic p. Also let

$$
\begin{aligned}
\mathcal{O}_{K} & =\left\{\alpha \in K: v_{K}(\alpha) \geq 0\right\} \\
& =\text { ring of integers of } K \\
\pi_{K} & =\text { uniformizer for } \mathcal{O}_{K}\left(\text { i.e., } v_{K}\left(\pi_{K}\right)=1\right) \\
\mathcal{M}_{K} & =\pi_{K} \mathcal{O}_{K} \\
& =\text { unique maximal ideal of } \mathcal{O}_{K}
\end{aligned}
$$

Let L / K be a totally ramified Galois extension of degree p^{n}, and set $G=\operatorname{Gal}(L / K)$.

Galois scaffolds (setup)

Let $b_{1} \leq b_{2} \leq \cdots \leq b_{n}$ be the lower ramification breaks of L / K, counted with multiplicity. Assume that $p \nmid b_{i}$ for $1 \leq i \leq n$.

Set $\mathbb{S}_{p^{n}}=\left\{0,1, \ldots, p^{n}-1\right\}$ and write $s \in \mathbb{S}_{p^{n}}$ in base p as

$$
s=s_{(0)} p^{0}+s_{(1)} p^{1}+\cdots+s_{(n-1)} p^{n-1}
$$

with $0 \leq s_{(i)}<p$. Define a partial order on $\mathbb{S}_{p^{n}}$ by $s \preceq t$ if $s_{(i)} \leq t_{(i)}$ for $0 \leq i \leq n-1$.

Define $\mathfrak{b}: \mathbb{S}_{p^{n}} \rightarrow \mathbb{Z}$ by

$$
\mathfrak{b}(s)=s_{(0)} p^{0} b_{n}+s_{(1)} p^{1} b_{n-1}+\cdots+s_{(n-1)} p^{n-1} b_{1}
$$

Let $r: \mathbb{Z} \rightarrow \mathbb{S}_{p^{n}}$ be the function which maps $a \in \mathbb{Z}$ onto its least nonnegative residue modulo p^{n}. The function $r \circ(-\mathfrak{b}): \mathbb{S}_{p^{n}} \rightarrow \mathbb{S}_{p^{n}}$ is a bijection since $p \nmid b_{i}$. Therefore we may define $\mathfrak{a}: \mathbb{S}_{p^{n}} \rightarrow \mathbb{S}_{p^{n}}$ to be the inverse of $r \circ(-\mathfrak{b})$. Extend \mathfrak{a} to a function from \mathbb{Z} to $\mathbb{S}_{p^{n}}$ by setting $\mathfrak{a}(t)=\mathfrak{a}(r(t))$ for $t \in \mathbb{Z}$.

Galois scaffolds

Definition ([BCE], Definition 2.6)

A Galois scaffold $\left(\left\{\Psi_{i}\right\},\left\{\lambda_{t}\right\}\right)$ for L / K with precision $\mathfrak{c} \geq 1$ consists of elements $\Psi_{i} \in K[G]$ for $1 \leq i \leq n$ and $\lambda_{t} \in L$ for all $t \in \mathbb{Z}$ such that the following hold:
(1) $v_{L}\left(\lambda_{t}\right)=t$ for all $t \in \mathbb{Z}$.
(2) $\lambda_{t_{1}} \lambda_{t_{2}}^{-1} \in K$ whenever $t_{1} \equiv t_{2}\left(\bmod p^{n}\right)$.
(3) $\Psi_{i}(1)=0$ for $1 \leq i \leq n$.
(9) For $1 \leq i \leq n$ and $t \in \mathbb{Z}$ there exists $u_{i t} \in \mathcal{O}_{K}^{\times}$such that the following congruence modulo $\lambda_{t+p^{n-i} b_{i}} \mathcal{M}_{L}^{\mathcal{L}}$ holds:

$$
\Psi_{i}\left(\lambda_{t}\right) \equiv \begin{cases}u_{i t} \lambda_{t+p^{n-i} b_{i}} & \text { if } \mathfrak{a}(t)_{(n-i)} \geq 1 \\ 0 & \text { if } \mathfrak{a}(t)_{(n-i)}=0\end{cases}
$$

A basis for $K[G]$

Let $\left(\left\{\Psi_{i}\right\},\left\{\lambda_{t}\right\}\right)$ be a Galois scaffold for L / K with precision \mathfrak{c}. For $s \in \mathbb{S}_{p^{n}}$ set

$$
\Psi^{(s)}=\Psi_{n}^{s_{(0)}} \Psi_{n-1}^{s_{(1)}} \ldots \Psi_{2}^{s_{n-2)}} \Psi_{1}^{s_{(n-1)}}
$$

Then for every $t \in \mathbb{Z}$ there are $U_{s t} \in \mathcal{O}_{K}^{\times}$such that the following holds modulo $\lambda_{t+\mathfrak{b}(s)} \mathcal{M}_{\mathcal{L}}^{\mathfrak{c}}$:

$$
\Psi^{(s)}\left(\lambda_{t}\right) \equiv \begin{cases}U_{s t} \lambda_{t+\mathfrak{b}(s)} & \text { if } s \preceq \mathfrak{a}(t) \\ 0 & \text { if } s \npreceq \mathfrak{a}(t)\end{cases}
$$

Then $\left\{\Psi^{(s)}: s \in \mathbb{S}_{p^{n}}\right\}$ is a K-basis for $K[G]$.
For $\xi \in K[G]$ with $\xi \neq 0$ define

$$
\hat{v}_{L}(\xi)=\min \left\{v_{L}(\xi(\lambda))-v_{L}(\lambda): \lambda \in L^{\times}\right\} .
$$

Let $\lambda \in L^{\times}$and set $v_{L}(\lambda)=t$. Then $v_{L}\left(\Psi^{(s)}(\lambda)\right) \geq t+\mathfrak{b}(s)$, with equality if and only if $s \preceq \mathfrak{a}(t)$. Hence $\hat{v}_{L}\left(\Psi^{(s)}\right)=\mathfrak{b}(s)$.

The map $\phi: L \otimes_{K} L \rightarrow L[G]$

There is a K-linear $\operatorname{map} \phi: L \otimes_{K} L \rightarrow L[G]$ defined by

$$
\phi(a \otimes b)=\sum_{\sigma \in G} a \sigma(b) \sigma .
$$

For $x \in L$ we get

$$
\phi(a \otimes b)(x)=\sum_{\sigma \in G} a \sigma(b x)=a \operatorname{Tr}_{L / K}(b x)
$$

Proposition ([Bon1], Proposition 1.1.2)

ϕ is an isomorphism of K-vector spaces.

A partial order

Recall that $[L: K]=p^{n}$.
Let H be the subgroup of $\mathbb{Z} \times \mathbb{Z}$ generated by the element $\left(p^{n},-p^{n}\right)$.
For $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ write $[a, b]$ for the $\operatorname{coset}(a, b)+H$.
Define a partial order on the quotient group $(\mathbb{Z} \times \mathbb{Z}) / H$ by $[a, b] \leq[c, d]$ if and only if there is $\left(c^{\prime}, d^{\prime}\right) \in[c, d]$ such that $a \leq c^{\prime}$ and $b \leq d^{\prime}$.

We often use the following set of coset representatives for $(\mathbb{Z} \times \mathbb{Z}) / H$:

$$
\begin{aligned}
\mathcal{F} & =\left\{(a, b) \in \mathbb{Z} \times \mathbb{Z}: 0 \leq b<p^{n}\right\} \\
& =\mathbb{Z} \times \mathbb{S}_{p^{n}}
\end{aligned}
$$

An example

Let $p^{n}=9$. Here is the set

$$
\{(c, d) \in \mathcal{F}:[-3,2] \leq[c, d]\}:
$$

Expansions of tensors

Choose a uniformizer π_{L} for L and let \mathcal{T} be the set of Teichmüller representatives of K.

Let $\beta \in L \otimes_{K} L$. Then there are unique $a_{i j} \in \mathcal{T}$ such that

$$
\beta=\sum_{(i, j) \in \mathcal{F}} a_{i j} \pi_{L}^{i} \otimes \pi_{L}^{j}
$$

Set

$$
R(\beta)=\left\{[i, j]:(i, j) \in \mathcal{F}, a_{i j} \neq 0\right\} .
$$

Then $R(\beta)$ depends on the choice of π_{L}.

Diagrams and diagonals

Definition

Define the diagram of $\beta \in L \otimes_{K} L$ to be

$$
D(\beta)=\{[x, y] \in(\mathbb{Z} \times \mathbb{Z}) / H:[i, j] \leq[x, y] \text { for some }[i, j] \in R(\beta)\}
$$

Proposition ([Bon2], Remark 2.4.3)

$D(\beta)$ does not depend on the choice of uniformizer π_{L} for L.
For $\beta \in L \otimes_{K} L$ with $\beta \neq 0$ define

$$
d(\beta)=\min \{i+j:[i, j] \in D(\beta)\}
$$

Define the diagonal of β to be

$$
N(\beta)=\{[i, j] \in D(\beta): i+j=d(\beta)\} .
$$

The generating set of a diagram

Let $G(\beta)$ denote the set of minimal elements of $D(\beta)$ with respect to the partial order \leq. Then $N(\beta) \subset G(\beta)$.

Set $i_{0}=\mathfrak{b}\left(p^{n}-1\right)$. Then $i_{0}+p^{n}-1=v_{L}\left(\delta_{L / K}\right)$ is the valuation of the different of L / K.

Theorem ([Bon2], Proposition 2.4.2)
Let $\beta \in L \otimes_{K} L$ be such that $\xi:=\phi(\beta) \in K[G]$. Then the following statements are equivalent:
(1) $[a, b] \in G(\beta)$.
(2) For all $\lambda \in L$ with $v_{L}(\lambda)=-b-i_{0}$ we have $v_{L}(\xi(\lambda))=a$.

It follows from the theorem that if $\xi=\phi(\beta)$ then $\hat{v}_{L}(\xi)=d(\beta)+i_{0}$.
More precisely, for $\lambda \in L^{\times}$we have $v_{L}(\xi(\lambda)) \geq v_{L}(\lambda)+d(\beta)+i_{0}$, with equality if and only if $v_{L}(\lambda)=-b-i_{0}$ for some $[a, b] \in N(\beta)$.

An example

Let $p^{n}=9$ and set

$$
\beta=a_{50} \pi_{L}^{5} \otimes \pi_{L}^{0}+a_{44} \pi_{L}^{4} \otimes \pi_{L}^{4}+a_{34} \pi_{L}^{3} \otimes \pi_{L}^{4}+a_{05} \pi_{L}^{0} \otimes \pi_{L}^{5} .
$$

with $a_{i j} \in \mathcal{T} \backslash\{0\}$. We get

$$
\begin{aligned}
R(\beta) & =\{[5,0],[4,4],[3,4],[0,5]\} \\
G(\beta) & =\{[5,0],[3,4],[0,5]\} \\
N(\beta) & =\{[5,0],[0,5]\} \\
d(\beta) & =5
\end{aligned}
$$

The subset of \mathcal{F} corresponding to $D(\beta)$ is \ldots

Example diagram

$p^{n}=9, \quad \beta=a_{50} \pi_{L}^{5} \otimes \pi_{L}^{0}+a_{44} \pi_{L}^{4} \otimes \pi_{L}^{4}+a_{34} \pi_{L}^{3} \otimes \pi_{L}^{4}+a_{05} \pi_{L}^{0} \otimes \pi_{L}^{5}$

Semistable extensions

Definition ([Bon2], Definition 3.1.1)

Let L / K be a totally ramified Galois extension of degree p^{n}.
(1) Say that L / K is semistable if there is $\beta \in L \otimes_{K} L$ such that $\phi(\beta) \in K[G], p \nmid d(\beta)$, and $|N(\beta)|=2$.
(2) Say that L / K is semistable with precision $\mathfrak{c} \geq 1$ if we may choose β so that $a+b \geq d(\beta)+\mathfrak{c}$ for all $[a, b] \in G(\beta) \backslash N(\beta)$.

Theorem ([Bon2], Proposition 3.2.1)

Let L / K be semistable with precision \mathfrak{c}, and let $\beta \in L \otimes_{K} L$ be the corresponding tensor. Then there is $h \in \mathbb{Z}$ with $h \equiv i_{0}\left(\bmod p^{n}\right)$ such that $D(\beta)=\{[0, h],[h, 0]\}$.

Hence by replacing β with a K-multiple we may assume that $D(\beta)=\left\{\left[0, i_{0}\right],\left[i_{0}, 0\right]\right\}$.

Galois scaffold \Rightarrow semistable

Theorem

Let L/K be a totally ramified Galois extension of degree p^{n} which has a Galois scaffold with precision \mathfrak{c}. Then L / K is semistable with precision \mathfrak{c}.

Proof for $\mathfrak{c}=1$: Let $\left(\left\{\Psi_{i}\right\},\left\{\lambda_{t}\right\}\right)$ be a Galois scaffold for L / K. Set $\xi=\psi^{\left(p^{n}-2\right)}$. For $\lambda \in L^{\times}$we get $v_{L}(\xi(\lambda)) \geq v_{L}(\lambda)+\mathfrak{b}\left(p^{n}-2\right)$, with equality if and only if either $v_{L}(\lambda) \equiv-\mathfrak{b}\left(p^{n}-1\right)\left(\bmod p^{n}\right)$ or $v_{L}(\lambda) \equiv-\mathfrak{b}\left(p^{n}-2\right)\left(\bmod p^{n}\right)$.

Let $\beta \in L \otimes_{K} L$ be such that $\phi(\beta)=\xi$. It follows that $N(\beta)=\left\{\left[-b_{n}, 0\right],\left[0,-b_{n}\right]\right\}$. Therefore L / K is semistable.

Corollary

Let L/K be a totally ramified Galois extension of degree p^{n} which has a Galois scaffold. Then the lower ramification breaks of L / K satisfy $b_{i} \equiv-i_{0}\left(\bmod p^{n}\right)$ for $1 \leq i \leq n$.

Coefficientwise multiplication in $K[G]$

Definition

Let $\xi=\sum_{\sigma \in G} a_{\sigma} \sigma$ and $\eta=\sum_{\sigma \in G} b_{\sigma} \sigma$ be elements of $K[G]$. Define $\xi * \eta=\sum_{\sigma \in G} a_{\sigma} b_{\sigma} \sigma$.

Proposition ([Bon1], Proposition 1.6.1)

Let $\alpha, \beta \in L \otimes_{K} L$ be such that $\phi(\alpha) \in K[G]$ and $\phi(\beta) \in K[G]$. Then $\phi(\alpha \beta)=\phi(\alpha) * \phi(\beta)$. In particular, $\phi(\alpha \beta) \in K[G]$.

Corollary

Let $\beta \in L \otimes_{K} L$ satisfy $\phi(\beta) \in K[G]$. Then for all $s \geq 0$ we have $\phi\left(\beta^{s}\right) \in K[G]$.

Another basis for $K[G]$

Let L / K be a semistable extension. Then there is $\beta \in L \otimes_{K} L$ such that $\phi(\beta) \in K[G]$ and $N(\beta)=\left\{\left[0, i_{0}\right],\left[i_{0}, 0\right]\right\}$. Hence there are $t, u \in \mathcal{T} \backslash\{0\}$ and $R \in L \otimes_{K} L$ with $d(R)>i_{0}$ and

$$
\beta=t \pi_{L}^{0} \otimes \pi_{L}^{i_{0}}+u \pi_{L}^{i_{0}} \otimes \pi_{L}^{0}+R
$$

It follows that for $s \in \mathbb{S}_{p^{n}}$ there is $R_{s} \in L \otimes_{K} L$ with $d\left(R_{s}\right)>s i_{0}$ and

$$
\beta^{s}=\sum_{j=0}^{s}\binom{s}{j} t^{j} u^{s-j} \pi_{L}^{(s-j) i_{0}} \otimes \pi_{L}^{s i_{0}}+R_{s}
$$

It follows that $d\left(\beta^{s}\right)=s i_{0}$ and $D\left(\beta^{s}\right)=\left\{\left[(s-j) i_{0}, j i_{0}\right]: j \preceq s\right\}$.
Set $\xi^{* s}=\phi\left(\beta^{s}\right)$. Then $\xi^{* s} \in K[G]$. For $\lambda \in L^{\times}$we get $v_{L}\left(\xi^{* s}(\lambda)\right) \geq v_{L}(\lambda)+(s+1) i_{0}$, with equality if and only if $v_{L}(\lambda) \equiv-(j+1) i_{0}\left(\bmod p^{n}\right)$ for some $j \in \mathbb{S}_{p^{n}}$ such that $j \preceq s$.

The set $\left\{\xi^{* s}: s \in \mathbb{S}_{p^{n}}\right\}$ is a K-basis for $K[G]$.

Semistable \Rightarrow Galois scaffold

Theorem

Let L / K be a semistable extension of degree p^{n}. Then there is a Galois scaffold for L / K with precision 1.

Proof: There are $\xi \in K[G]$ and $\beta \in L \otimes_{K} L$ such that $\phi(\beta)=\xi$ and $N(\beta)=\left\{\left[i_{0}, 0\right],\left[0, i_{0}\right]\right\}$.

For $1 \leq i \leq n$ define

$$
\Theta_{i}=\phi\left(\beta^{p^{n}-p^{n-i}-1}\right)=\xi^{* p^{n}-p^{n-i}-1} .
$$

Then $\Theta_{i} \in K[G]$. Set $c_{i}=\hat{v}_{L}\left(\Theta_{i}\right)=\left(p^{n}-p^{n-i}\right) i_{0}$. Then

$$
c_{i} \equiv-p^{n-i} i_{0} \equiv p^{n-i} b_{i} \quad\left(\bmod p^{n}\right)
$$

Let $\lambda \in L^{\times}$and set $t=v_{L}(\lambda)$. Then $v_{L}\left(\Theta_{i}(\lambda)\right) \geq t+c_{i}$, with equality if and only if $\mathfrak{a}(t)_{(n-i)} \geq 1$.

Semistable \Rightarrow Galois scaffold (continued)

Set $v_{i}=\left(c_{i}-p^{n-i} b_{i}\right) / p^{n}$. Then $\Phi_{i}=\pi_{K}^{-v_{i}} \Theta_{i}$ satisfies $v_{L}\left(\Phi_{i}(\lambda)\right) \geq t+p^{n-i} b_{i}$, with equality if and only if $\mathfrak{a}(t)_{(n-i)} \geq 1$.

For $1 \leq i \leq n$ set $\Psi_{i}=\Phi_{i}-\Phi_{i}(1)$. Then $\Psi_{i}(1)=0$. Let $\lambda \in L^{\times}$and set $t=v_{L}(\lambda)$. Since $v_{L}\left(\Phi_{i}(1)\right)>p^{n-i} b_{i}$ we get

$$
\Psi_{i}(\lambda) \equiv \Phi_{i}(\lambda) \quad\left(\bmod \mathcal{M}_{L}^{t+p^{n-i} b_{i}+1}\right) .
$$

Let $\left\{\lambda_{t}: t \in \mathbb{Z}\right\}$ be elements of L such that $v_{L}\left(\lambda_{t}\right)=t$ for all $t \in \mathbb{Z}$ and $\lambda_{t_{1}} \lambda_{t_{2}}^{-1} \in K$ for all t_{1}, t_{2} such that $t_{1} \equiv t_{2}\left(\bmod p^{n}\right)$.

Suppose $\mathfrak{a}(t)_{(n-i)} \geq 1$. Then $v_{L}\left(\Psi_{i}\left(\lambda_{t}\right)\right)=t+p^{n-i} b_{i}$, so there is $u_{i t} \in \mathcal{O}_{K}^{\times}$such that

$$
\Psi_{i}\left(\lambda_{t}\right) \equiv u_{i t} \lambda_{t+p^{n-i} b_{i}} \quad\left(\bmod \lambda_{t+p^{n-i} b_{i}} \mathcal{M}_{L}\right) .
$$

It follows that $\left(\left\{\Psi_{1}, \ldots, \Psi_{n}\right\},\left\{\lambda_{t}\right\}\right)$ is a Galois scaffold for L / K with precision 1.

Some questions

Let L / K be a semistable extension with precision $\mathfrak{c}>1$. The Galois scaffold for L / K produced by our methods need not have precision \mathfrak{c}. In fact, the best we can say is that it has precision 1.

It would be interesting to know whether a semistable extension with sufficiently high precision must have a Galois scaffold with precision \mathfrak{c} for some $\mathfrak{c}>1$.

Note however that a semistable extension with sufficiently high precision (e.g., $\mathfrak{c} \geq p^{n}$) is stable, and hence semistable with infinite precision. Hence we can't expect a semistable extension with precision \mathfrak{c} to have a Galois scaffold with precision \mathfrak{c} in every case.

It would be useful to have some examples of semistable extensions with high precision which don't admit Galois scaffolds with high precision.

